
Copyright
© Copyright 2010 Crisis Prevention and Recovery, LLC. (CPRLLC), all rights reserved.
SoftwareCPR® is a DBA of Crisis Prevention and Recovery, LLC and the SoftwareCPR®
logo is a registered trademark.
SoftwareCPR® authorizes its clients and SoftwareCPR®.com subscribers use of this
document for internal review and training. Any other use or dissemination of this
document is expressly prohibited without the written authorization of SoftwareCPR®.
Individual original FDA documents in their original form without SoftwareCPR®
annotations are public information and may be shared without restriction.

Legal Disclaimer
The training document that follows should only be applied in the appropriate context
with oversight by regulatory and software professionals with direct knowledge and
experience with the topics presented. The document should not be used as a cookbook
since it is not adequate for some situations and may be excessive for others.
While SoftwareCPR® attempts to ensure the accuracy of information presented, no
guarantees are made since regulatory interpretations and enforcement practices are
constantly changing, and are not entirely uniform in their application.

Disclaimer of Warranties: The information is provided AS IS, without warranties of any
kind. CPRLLC does not represent or warrant that any information or data provided
herein is suitable for a particular purpose. CPRLLC hereby disclaims and negates any
and all warranties, whether express or implied, relating to such information and data,
including the warranties of merchantability and fitness for a particular purpose.

Agile methods for medical
device software …

Can it be compliant?
Can it be safe?

10/13/10 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

10/13/10, 3 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

So#wareCPR®	
 is	
 a	
 so#ware	
 regulatory,	
 safety,	
 compliance,	
 quality,	
 and	

management	
 consul<ng	
 firm.	
 	
 We	
 specialize	
 in	
 project	
 and	
 regulatory	
 crisis	

recovery	
 in	
 addi<on	
 to	
 training,	
 preven<ve	
 ac<on,	
 and	
 con<nuous	
 improvement.	

Our	
 expert	
 staff	
 and	
 partners	
 are	
 industry	
 prac<<oners	
 –	
 most	
 have	
 25+	
 years	

experience	
 in	
 the	
 medical	
 device	
 industry	
 at	
 technical	
 levels	
 through	
 execu<ve	

management.	
 We	
 provide	
 strategic	
 and	
 hands-­‐on	
 assistance	
 to	
 assure	
 the	
 success	

of	
 your	
 so#ware	
 investments.	

Our	
 approach	
 focuses	
 on	
 your	
 business	
 objec<ves,	
 project	
 and	
 regulatory	
 risk	

management,	
 and	
 pragma0c	
 approaches	
 that	
 are	
 tailored	
 to	
 your	
 internal	
 culture.	
 	

We	
 work	
 closely	
 with	
 your	
 internal	
 staff,	
 external	
 vendors,	
 your	
 FDA	
 counsel	
 and	

FDA	
 itself.	

10/13/10, 4 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

•  Very common question among medical device
companies.

•  Resources:
•  AAMI developing a Technical Information

Report (TIR) on the use of agile methods for
medical device software

•  ASQ will be releasing a position statement on
agile

Can we use Agile methods?  YES

How should we do it?

10/13/10, 5 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

 Make sure the elements of
IEC 62304 are satisfied
using the flexibility inherent
in it.

“You	
 may	
 find	
 that	
 some	
 agile	
 methods,	
 when	

implemented	
 properly,	
 are	
 not	
 only	
 compliant	
 with	

regulatory	
 law	
 &	
 guidance,	
 but	
 are	
 better	
 than	

traditional	
 methods	
 for	
 ensuring	
 safety	
 and	

effectiveness.”	

Can we use Agile methods?  YES

Why use a software process
standard?

  Provides some assurance that what you are doing is
consistent with established state of the practice.

  Creates a common “checklist” of expectations
between manufacturer and regulator.

  Provides a common language to communicate to
regulators

  Regulatory expectation or requirement is increasing

10/13/10, 6 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

IEC 62304 background
  Specifically created for medical device software

  IEC 60601-1-4 and general software engineering
standards were not considered adequate

  Significant FDA involvement from start

  Scope includes “stand-alone software” and “embedded
software”

  Based on ANSI/AAMI/SW68 with a few significant
differences

  Omits requirements duplicated elsewhere (QMS)

  Adds requirements considered essential for medical
devices (safety aspects)

10/13/10, 7 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Status of IEC 62304
  Approved by both IEC and ISO as an international standard (joint

development effort)

  Adopted by CENELEC as EN and harmonized 11/08 under the MDD,
AIMDD and IVDD

  Adopted by ANSI as US national standard (replacing ANSI/AAMI/SW 68)

  Recognized by FDA for use in premarket submissions

  China – SFDA adopted 62304

  Translations exist in French, German, Spanish, Chinese and Japanese

  In final phase of adoption as a Japan Industry Standard

  ANSI/AAMI/IEC 62304 is identical to IEC 62304:2006 as is EN
62304:2007 which will be the harmonized one

10/13/10, 8 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

IEC 62304 - What is it?
  A framework – processes, activities and tasks

  Process is the top level; a process has activities and
an activity has tasks. Specific requirements in IEC
62304 are generally at the task level.

  Identifies requirements for what needs to be done
and what needs to be documented

  Specifies a software safety classification scheme
  Additional requirements apply as safety becomes

more important
  Much more significant than minor/moderate

distinction in SW68

10/13/10, 9 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

IEC 62304 – What’s not in
it?

  Does not prescribe how to accomplish
requirements
  Not a “how to” with defined methods or practices

  Does not require a specific software life cycle

  Does not specify documents
  What to document, not where it must go.

  All of these decisions are left to the manufacturer –
within reason?

  Does not address “validation” – SW68 did – Why?

10/13/10, 10 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Key to FDA compliance
  FDA is flexible on lifecycle, methods, and

documentation organization and format

  Ad hoc, informal development and validation is not
acceptable

  Internal Plans and SOPs define your approach

  Conformance to your plans and SOPs is required

  THIS IS CENTRAL TO ALL ASPECTS OF A FORMAL
QUALITY SYSTEM

10/13/10, 11 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

IEC62304
  Section 5.2.1 Process Definition, Note 2:

“These activities and tasks may overlap or interact
and may be performed iteratively or recursively. It
is not the intent to imply that a waterfall model
should be used.”

10/13/10, 12 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

FDA
GPSV - 5.1. SOFTWARE LIFE CYCLE

ACTIVITIES

“This guidance does not recommend (specify) the use
of any specific software life cycle model. Software
developers should establish a software life cycle
model that is appropriate for their product and
organization.”

10/13/10, 13 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Three Common Pitfalls
 (and possibly misconceptions)

“Agile methods are not suited for medical device
software development because …”
•  the lack of formal requirements
•  no formal verification and validation
•  no formal process for ensuring all hazards

are properly mitigated

10/13/10, 14 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Pitfall #1: “Agile methods could be non-compliant
because of the lack of formal requirements.”

•  Planning process and documentation may neglect
design inputs

•  Plans and procedures may not address increment
planning and process for determining increments

•  May get overly focused on software (implementation)
and not capture requirements (essence)

•  May improperly focus on non-safety, non-efficacy related
requirements

•  Subsequent sprints may re-factor implementation but
fail to update requirements

•  no CM for requirements documentation

10/13/10, 15 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Using a scrum approach as an example …

10/13/10, 16 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Critical Discipline Point: Special Sprint Zero

10/13/10, 17 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Although details may not be known,
intended use and system level risks

must be identified early and
provided as an input to the

software development process

Discipline Point: Capture Requirements During Sprint

10/13/10, 18 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

High Level
Features elaboration

Detailed
Requirements

Discipline Point: “Requirements” are central to
everything, BUT don’t need to be at same levels (waste)

10/13/10, 19 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Low	
 level	
 High	
 level	

Ty
p
ic

al
 s

it
u
at

io
n

EVERYTHING

LE
A

N
 a

p
p
ro

ac
h

SAFETY

EFFICACY
UI

Pitfall #2: “Agile methods are not suited for medical device
software development because there is no formal

verification and validation.”

•  May get overly focused/weighted toward unit
testing

•  May omit formal technical reviews with evidence

•  May not perform proper regression testing or
know when to perform regression testing

•  May fail to capture integration and system level
test cases during sprints

•  Self-managed teams may neglect formal testing
altogether!

10/13/10, 20 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Discipline Point:
Capture test cases during the iteration

•  Each sprint should capture unit testing for the
development of that sprint

•  As the system grows, each sprint should also
capture integration and system level test cases as
appropriate for the system interactions added
during that sprint

•  Integration and system test failures should be
captured in a defect tracking system

•  Test and spec approvals prior to running formal
tests during certain identified sprints

•  All test documentation is under CM

10/13/10, 21 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

10/13/10, 22 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Discipline Point:
Track bugs from integration

and system testing and
feedback to Product Backlog.

Discipline Point:
Don’t forget to

capture integration
and system test

cases during each
sprint!

Testing and V&V

Pitfall #3: “Agile methods are not suited for medical
device software development because there is no formal
process for ensuring all hazards are properly mitigated.”

•  While system level hazards may be known,
sprint team may be not identify software-
cause hazards

•  Team may equate zero-defects with risk-free

•  Even if hazards are mitigated, mitigation may
not be formally documented for test

•  Subsequent sprints might alter mitigation
software and inadvertently dilute the
mitigation effect

10/13/10, 23 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Discipline Point:
Add RM activities to sprints

•  Each sprint should capture any new hazards or
causes identified and document in risk
management file

•  Each sprint should capture any mitigations
developed in that sprint and capture in
requirements documentation

•  Phase planning should account for reviews of
the RM documentation

•  Consider a designated risk team member to
participate in selected sprints or reviews

10/13/10, 24 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

10/13/10, 25 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Critical Discipline Point:
Sprint Zulu – Final system and device testing, risk

review, open issues reviews

Device Integration and
System Testing

Medical device software “gotta haves”

•  Software development plan
- for both pre-production and post-production
(maintenance)

•  Software Architectural Design

•  Detailed Software Requirements for:

–  safety-related software - software that
•  if it fails could lead to hazard

•  detects hardware failures that could lead to
hazard

–  core clinical performance - software that
performs primary function of medical
device, e.g. heart rate algorithm

•  Traceability analysis showing

–  requirements to design/code

–  requirements to test cases

–  linkage of mitigations (from risk analysis)
to requirements and verification

•  Written test procedures for testing
detailed software requirements.

10/13/10, 26 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

  Verification and validation plan
- providing overall strategy for establishing safety and
efficacy of software, particularly regression test
strategy for changes

  Problem resolution plan or procedure
- identifying process for addressing design changes
both pre-production and post-production

  Risk management plan and analysis
- showing system level and software level hazards,
pre-mitigation risk score, mitigations, post-mitigation
risk score, and residual risk analysis.

  Configuration management plan or procedure
  Software media release/control plan
  Usability testing plan or procedure
  Documented test results

- identifying test case, software/hardware
configuration tested, clear indication of pass/fail, and
for any failures, clear linkage to resolution/disposition

5.7 SW
System
Testing

5.7 SW
System
Testing

For Each Increment For Each Release

5.7 SW
System
Testing

5.3 SW
Architectural

Design

5.4 SW
Detailed
Design

5.5 SW Unit
Implement. &
Verification

5.6 SW
Integration and
Integr. Testing

5.6 SW
Integration and
Integr. Testing

5.6 SW
Integration and
Integr. Testing

5.2 SW
Requirements

Analysis

Mapping 62304’s activities…

5.2 SW Requirements Analysis – High-Level, Backlog Management

5.3 SW Architectural Design – Infrastructure, Spikes

5.3 SW Architectural Design - Emergent
5.4 SW Detailed Design

5.5 SW Unit Implementation and Verification

5.2 SW Requirements Analysis – Story Details

5.7 SW System Testing

5.6 SW Integration and Integr. Testing

5.6 SW
Integration and
Integr. Testing

5.7 SW System
Testing &

Regression

5.6 SW
Integration and
Integr. Testing

5.7 SW System
Testing &

Regression

5.8 SW
Release

For Each Story

…into Agile’s Incremental/Evolutionary life cycle

5.1 SW Development Planning

For Each Project

5.1 SW Development Planning

5.2 SW Requirements
Analysis

5.3 SW Architectural
Design

5.4 SW
Detailed Design

5.5 SW Unit
Implement. & Verif

5.6 SW Integration and
Integr. Testing

5.7 SW
System Testing

5.8 SW
Release

5.2 SW Requirements
Analysis

5.3 SW Architectural
Design

5.1 SW Development Planning

5.8 SW
Release

Credit: Kelly Weyrauch & AAMI TIR Working Group for agile methods.

  Think Lean

  Understand the “intent” of the regulations and/or
standards

  Inspect and Adapt

  Construct your quality system to allow tailoring of
approach without losing discipline

  Tyranny of the “or” – be agile and compliant

10/13/10, 28 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Conclusion

SoftwareCPR Consulting
Successful Software Development in a Regulated Environment

  Transformation for organizational agility – adaptable, able to change at speed, and compliant

  Methodologies, key practices and discipline points, and culture

Training

  EN 62304 software development processes and related software standards; Making your agile‐type process EN 62304
compliant (or vice versa)

  ISO 14971 Medical Device and Software Risk Analysis; Assist with system and software hazards analysis using the pre-

and post- mitigation evaluation; Using Fault Tree Analysis approach for hazards identification and analysis

  Medical Device Software Verification and Validation

  FDA and EU Quality System compliance

  Integration Of Software Usability Engineering Into ISO 14971 Risk Management Using IEC 62366 as a guide

Regulatory support

  Articulation in FDA Terminology; Planning and reviewing

  FDA interaction and negotiation–inspections, submissions, injunctions, and consent decrees; inspection-readiness audits

  Software information sections ; Full submission preparation; Deciding when to submit a new 510(k)

  MDR evaluations, Field Corrections and Recalls

  EU requirements

Website information service and knowledgebase
A subscription to our website provides access to complied FDA software related warning letters and recalls, SoftwareCPR® checklists and
example training documents, software related regulatory news, guidance, and standards.

10/13/10, 29 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

Next Public Training Course
SoftwareCPR® is running its third public offering of its course entitled “Efficient Use
of Medical Device Software Standards 62304, 60601-1 PEMS,TIR32, 80001-1, and
80002-1 for Safety and Regulatory Compliance”.

 When: Nov 9 - 11, 2010

 Where: Burlington, MA USA (near Boston).

IEC 62304 is an EU harmonized standard. FDA is performing internal training on this standard, and other
regulatory authorities are adopting it. This makes it important that software, QA, and RA staff have although
understanding of this and related medical device software standards and their relationship to FDA requirements
as well. This 3 day course will be taught by Sherman Eagles and Alan Kusinitz of SoftwareCPR® . It will
provide in-depth practical coverage of both requirements of these standards and practical efficient and effective
implementation approaches, including similarities and differences with FDA guidance and expectations. The
course includes extensive emphasis on software risk management, including the recently released
80002-1Medical Device Software Risk Management technical report.
Sherman Eagles was a Medtronics Staff Fellow and chair/convener for 62304 and 60601-1 PEMS and other
standards, so his perspective is excellent and important to fully understand the intent of the standards.
Alan Kusinitz was co-chair for AAMI TIR32 Medical Device Software Risk Management, contributor and
reviewer for 80002-1, reviewer for 62304 and was on the committee that developed SW68 the pre-cursor to
62304.

10/13/10, 30 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

  Contact:

Brian Pate
813.766.0563 (office/cell)
brian@softwarecpr.com

Mike Russell
813.468.9675 (office/cell)
mrussell@softwarecpr.com

10/13/10, 31 © 2010 Brian Pate, Mike Russell (SoftwareCPR LLC)

