

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 1 of 21

IVD INSTRUMENT TRAINING

EXAMPLE

This is not a template or cookbook.

It has pros and cons and is partial and to be

used for training discussions only.

It includes comments for consideration.

It shows the evolution of some items as the

lifecycle progresses.

It is a vertical slice partial example not a

document set.

It has been constructed specifically for our

Software Standards Training Course by

Raffaele Caliri of SoftwareCPR®

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 2 of 21

1. Introduction
This example is using an IVD application to illustrate the relationship between

different technical documents and their relevance to the IEC 62304 standard.

The documents we are addressing span from construction phase to system test phase

of a project.

To limit the scope of this example to a manageable size we shall take into

consideration a specific slice of the project. It is not the purpose of this example to

fully develop this slice, only to give an idea of what is required in terms of

documentation and what could be the process. For this reason, in this example we

shall proceed by exemplifying portions of the documents, without any pretence to be

complete.

We shall show how risk analysis is identifying Risk Control Measures that add to or

modify the original software requirements

We shall show how testing is applied to the critical requirements derived from risk

control measures.

We shall address the role of traceability to demonstrate coverage of all risk control

measures.

2. Description of the application
The application of this example is a Blood Gas Analyzer, measuring pH (Hydrogen

ion activity), pO2 (Oxygen partial pressure) and pCO2 (Carbon Dioxide partial

pressure) on whole blood. These parameters are used to monitor the efficiency of the

oxygen exchange at pulmonary level and are of vital importance to keep under

control a patient under ventilation.

It is an instrument meant to be used in a wide range of situations and environments:

ER, ICU, Laboratory, etc.

The tests performed are not routine tests. They are critical care tests, the blood needs

to be analyzed immediately after extraction and the results are often needed as soon

as possible.

In addition to that, the blood used for these tests is usually arterial blood, which

means that the extraction is not very easy and could in some cases be slightly

traumatic.

This originates the following main requirements for the instrument:

- Being always ready for use: all samples are STAT samples.

- Being very reliable to avoid the need to repeat the sample collection.

- Having a pretty fast response time, in the order of few minutes worst case.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 3 of 21

The instrument does not perform any direct diagnostic or therapeutic intervention, but

the physician is basing diagnostic and therapeutic decisions, that in some cases could

be life threatening, on the results of the analysis carried out on this instrument.

The basic responsibilities of software in this instrument are:

- To control the fluidic cycles to aspirate the blood and bring it in contact with the

electrochemical sensors.

- To control the acquisition and conversion of the signal from the sensors.

- To calculate the quantitative results from the acquired signals.

- To present the results to the user.

Therefore a software misbehavior could cause erroneous results to be presented to the

user and erroneous results could lead the physician to apply a wrong therapy that

could potentially result in a major injury or death. In our view this behavior would

lead to classify the software of this device as Class C, according to the indications of

clause 4.3 of IEC 62304.

Note however that the software of this type of device is usually classified as

“moderate level of concern” in FDA submissions. This is probably due to the fact

that usually a physician does not base his/her therapeutic decisions exclusively on the

results of Blood Gas Analysis, and this somewhat mitigates the risk of life threatening

therapeutic decisions based on wrong results generated by software misbehavior.

If we want to be conservative, we should classify this software Class C.

3. Description of the slice

The Concept Specification or Marketing Requirement Specification shall indicate for

each measured parameter requirements related to the measure range and the precision

and accuracy of the results within the measure range.

It could be something like:

Analytical Specifications

(at 90 % confidence level)

Parameter Range Max Inaccuracy Max Imprecision

pH from 6.900 to 7.700 ± 15 mpH < 5.0 mpH SD

pCO2 from 8.0 to 29.9 mmHg ± 2.0 mmHg < 2.0 % CV

from 30.0 to 59.9 mmHg ± 2.0 mmHg < 1.5 % CV

from 60.0 to 90.0 mmHg ± 3.0 % of theor. value < 1.5 % CV

pO2 from 10 to 29 mmHg ± 1.5 mmHg < 4.0 % CV

from 30 to 99 mmHg ± 2.0 mmHg < 2.0 % CV

from 100 to 199 mmHg ± 3.0 % of theor. value < 1.5 % CV

from 200 to 399 mmHg ± 3.0 % of theor. value < 2.0 % CV

from 400 to 700 mmHg ± 4.0 % of theor. value < 2.0 % CV

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 4 of 21

Let’s assume that the measure sensors for each of the parameters have a linear

response in the specified measure range or a response that, despite not being fully

linear, could be made sufficiently close to linear in the specified measure range by

applying some linear correction algorithms empirically determined by the observation

of the behavior of a sufficient number of selected sensors.

In this case a linear calibration algorithm based on the acquisition of the values of two

calibration standards and the equation of a straight line could be used. The calculated

calibration parameters will be the offset and slope of the straight line used during

analysis to calculate the quantitative values of the blood sample measures.

The vertical slice of this example shall focus on the software required to support the

calibration of the instrument.

Since a misbehavior of the calibration software could affect the results presented to

the user, this software component, according to section 4.3(d) of IEC 62304, inherit

the same class of the main software (class C).

4. Requirements related to calibration.

In this section some examples of requirements related to the calibration functionality

are presented. It does not intend to be a complete set of requirements, but just some

hints to the different types of requirements that need to be written to define this

critical portion of the software project.

System Level Requirements:

In the System Requirement Specification, document that is outside the scope of IEC

62304, the need for a calibration should be covered with requirements of the type

Before the instrument is ready for use, a two points calibration shall be performed on

all measured parameters by presenting two standards of known composition and

calculating the offset and the slope of the calibration curve.

Software Level Requirements:

The following software requirements are just examples developed to show

compliance with clauses 5.2.1 and 5.2.2 of IEC 62304. They are largely incomplete

and are mostly functional requirements, although we can identify among them also

input and output, software driven alarms, usability requirements, data definition

requirements.

User Interface.

- [UISRS111] When the instrument is not calibrated (after switch on or after a

calibration failure), the main screen shall present the indication “NOT READY:

UNCALIBRATED” and a “CALIBRATE” soft key.

- [UISRS123] Pressing the “CALIBRATE” soft key shall start the Calibration

Process. During calibration, the main screen shall present the indication “NOT

READY: CALIBRATION IN PROGRESS” and a “STOP” soft key.

Comment [RC1]: Note that the system

requirement here is not complete and left pretty

generic because it is outside the scope of this

example. Additional requirements could be present

such as the required standard composition, the

sequence of operation, the level of accuracy, etc.

Comment [RC2]: The use of tags helps

identifying requirements for tracing purpose. Tag

numbers used here are irrelevant: they just show that

each requirement needs to be identified by an unique

tag. Also the use of letters to identify different

functional areas in the spec is totally arbitrary.

Comment [RC3]: Note that this requirement

could require more details related to the interface

between the User Interface and the Process Control

Comment [RC4]: Note that these requirements

are pretty basic and of course the user interface could

be much more complicated and imply driving the

operator to execute whatever action is required

during the calibration (e.g. presenting the calibrants,

starting the aspiration etc. in case the calibration is

not automatic with calibrants on-board.)

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 5 of 21

- [UISRS124] Pressing the “STOP” soft key shall abort the calibration and the

main screen shall revert to present “NOT READY: UNCALIBRATED”.

- [UISRS132] If the Calibration Process is successfully completed, the main

screen shall present the indication “READY” and a “SAMPLE” soft key.

- [UISRS133] Pressing the “SAMPLE” soft key shall start the Sampling Process

to measure a Patient or Control sample.

- [UISRSxxx] ……..

Process Control.

- [PCSRS099] The process control software shall drive the peristaltic pump motor

at speed XXXX for YYY seconds to aspirate the calibrant and bring it in contact

with the sensors.

- [PCSRS100] After ZZZ seconds from the end of the aspiration, the process

control software shall start the acquisition of the calibrant values by activating

the reading from the sensors.

- [PCSRS111] When reading is complete, the process control software shall drive

the peristaltic pump motor at speed AAAA for BBB seconds to remove the

calibrant and flush the lines.

- [PCSRSxxx] ……..

Data Acquisition.

- [DASRS011] The data acquisition software shall read the XX bits A/D

converter every YYY seconds.

- [DASRS012] To increase resolution and remove eventual spikes, a digital

filtering of order Z shall be applied to the acquired data. The final resolution

shall be 3 decimal digits.

- [DASRS055] When start acquisition command is received, a data ready

algorithm shall be applied to the acquired (filtered) values to ensure that a stable

plateau is reached: the acquisition result shall be returned when the difference

among N subsequent acquisition is constantly <MMM.

- [DASRS077] In case the acquired data do not reach the stability (data ready)

condition within SSS seconds from start of acquisition, the data acquisition

software shall stop the acquisition and return an “equilibration error”, that shall

cause an “END POINT” alarm to be presented to the user.

- [DASRSxxx] …….

Calibration.

- [CALSRS033] For each parameters, two calibration standards shall be measured

and the acquired data shall be used to calculate the calibration coefficients. The

resolution for this calculation shall be at least N decimal digits….

- [CALSRS034] The slope calibration coefficient shall be calculated as

 m = (Ref 2 - Ref 1) / (X 2 - X 1)

where Ref1 and Ref2 are the title values respectively for Calibration standard 1

and Calibration Standard 2 and Y1 and Y2 are the acquired values for the two

standards.

The figure below illustrate the meaning of the above algorithm (the orientation

Comment [RC5]: Note that some hardware

interface requirements could be needed to specify

how the motor is driven

Comment [RC6]: Additional requirements could

be needed in case liquid sensors are used instead of

or in addition to time to stop aspiration.

Comment [RC7]: Additional requirements could

be needed here to specify the interface between the

process control and the data acquisition.

Comment [RC8]: Note that some hardware

interface requirements could be needed to specify

how the A/D converter is managed.

Comment [RC9]: The details of the filter could

be left to design, but some characteristics, such as

final resolution of the data should be specified as

requirement because they directly affect the accuracy

of the final results and therefore are connected to the

analytical specification.

Comment [RC10]: This is a pretty generic way

to specify a validity criterion for the result. It could

be differently specified, with more or less detail. It is

important that it is specified what is needed to

achieve a final accuracy compatible with the

analytical specifications.

Comment [RC11]: This is just an example of a

possible error handling requirement: more details

could be added to fully define the handling.

Comment [RC12]: It is necessary to define

requirements allowing to meet the analytical spec.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 6 of 21

of the line is purely indicative, the slope could be positive or negative):

- [CALSRS035] The offset calibration coefficient shall be calculated as

 b = Ref1 – mX1

- [CALSRS011] The results of any patient or QC sample measured after

calibration shall be obtained applying the linear equation

 Y = mX + b

and then applying the following linearity corrections:

o ………

o ………

o ………

- [CALSRS050] The following checks shall be applied during calibration:

o The X1 acquired value shall be in the range aaa ≤ X1 ≤ bbb

o The X2 acquired value shall be in the range ccc ≤ X2 ≤ ddd

o The calculated slope coefficient shall be in the range eee ≤ m ≤ fff

o The calculated offset coefficient shall be in the range ggg ≤ b ≤ iii

o ……………..

In case the calibration does not pass the checks, the CAL ERROR alarm shall be

raised and the instrument shall revert to the “not ready: uncalibrated” status.

- [CALSRSxxx] ……..

It is important to note that the Analytical Specification defined in the Concept or

Marketing spec are driving many of the requirements related to data acquisition, data

reduction and calibration: from the resolution in the acquisition to the resolution in

the calculations, from the selection of the calibration points to the definition of the

linearity corrections, from the definition of the limits for data stability to the

definition of the limits for calibration range.

Ref2

Ref1

m

b

X1 X2

value

bits

Comment [RC13]: Linearity corrections will be

required if the response of the sensor is not fully

linear or not linear in the entire measure range.

Comment [RC14]: This is just a simple example,

the requirements on checks and alarm could be more

detailed and the subsequent actions could be more

complicated: for example, multiple trials could be

specified before raising the alarm.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 7 of 21

It is necessary to define all these detailed requirements in a way to fulfill the budget

of variation allowed by the accuracy and precision requirements of the Analytical

Specifications.

5. Risk analysis examples.

Of the several risks that could affect the calibration functionality, this section shall

identify two examples: the first example refers to an application related risk with risk

control measures implemented in software, the second one to possible hardware or

software defects requiring risk control measures implemented in software. This

allows to show application of clauses 7.1.1, 7.1.2 and 7.2 of IEC62304.

The following partial and simplified FTA diagram illustrates these examples.

Wrong Sample

Result presented

to User

Wrong Calibration

parameters

Memory

Corruption

Calibration

Instability

Offset Drift Slope Drift Hardware failure Software Defect

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 8 of 21

Example 1: calibration stability.

Let’s assume that the initial calibration is not stable over time because of a change of

the sensor characteristics. This is a pretty common behavior, and is usually mitigated

with the requirement to repeat the calibration once in while, where the frequency of

the repetition is related to the expected behavior of the sensor.

But let’s assume that the risk of a drift on the offset over time is considerably high

and much higher than the risk of a drift on the slope.

The risk analysis performed has indicated that the severity of this risk is high (a drift

in calibration, if not addressed, could mean wrong or highly inaccurate results and, as

consequence wrong diagnosis and wrong therapy) and that the probability of this to

happen is also significantly high, therefore a mitigation is needed.

As Risk Control Measure we can define a frequent check of the offset by repeated

reading of one of the calibration standards and, when the drift reaches a certain level,

trigger the execution of one point recalibration to update the offset coefficient.

Example 2: calibration parameters corruption.

Let’s assume that the calibration parameters are kept in memory, where there is the

risk of corruption caused by a software defect (stack overflow? Not properly handled

memory allocation? ….) or by a hardware failure.

Also in this case the severity of this risk is high (wrong calibration coefficients means

wrong results) and, since the cause could be a software defect, probability is high.

As Risk Control Measure we can put a CRC on the section of memory used to store

the calibration coefficients. The CRC is updated every time data are written in that

section and it is checked frequently. In case of CRC error, the execution of a two

point calibration is triggered.

The FTA diagram is modified to include the risk control measures.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 9 of 21

6. Additional calibration requirements related to RCMs.
The implementation of the risk control measures identified for the two examples

above implies additional requirements to be added to the set of calibration

requirements exemplified in section 4, as requested by clauses 7.2.2 and 5.2.3 of IEC

62304.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 10 of 21

In particular, at system level the need of automatic recalibration shall impose a

system design that keeps the calibration standards on-board and allows to bring them

in contact with the measure sensors without operator’s intervention. This shall have

impacts on the mechanical/fluidic hardware (e.g. having calibration standard

containers on board, valves to aspirate from different lines, possibility to

automatically rinse, etc.), as well as on electronics and, of course, on software.

Some examples of additional software requirements made necessary by the RCMs are

following.

Example 1: RCM123.

- [PCSRS200] After the 2 points calibration is completed, the process control

software shall keep the second calibration standard in contact with the measure

sensors.

- [PCSRS201] Every XXX minutes, the process control software shall drive the

peristaltic pump motor at speed YYYY for ZZZ seconds to renew the standard

in contact with the sensor.

- [DASRS100] After 2 Points Calibration is completed, every AAA seconds the

data acquisition software shall perform a new acquisition and check the acquired

value for evaluating the drift from the value used during previous calibration. If

the drift is > XXX, a 1 point offset calibration update shall be requested.

- [CALSRS123] When 1 point calibration is requested, a new offset shall be

calculated based on the value of the second calibration standard. It is equivalent

of a translation of the calibration straight line parallel to itself as illustrated from

the figure below.

The offset calibration coefficient shall be updated as follows:

 b’ = Ref2 – mX2’

value

b’

X2’

Ref2

Ref1

m

b

X1 X2 bits

Comment [RC15]: This requirement is replacing

the requirement to remove the standard at the end of

calibration.

Comment [RC16]: This could be needed if the

standard is expected to modify its property over time

when kept in the measure chamber.

Comment [RC17]: The drift could checked as

absolute value or as percentage change.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 11 of 21

Example 2: RCM099.

- [EHSRS111] Every time the calibration coefficients are calculated and stored, a

CRC shall be calculated and appended according to the following CRC

algorithm: …………..

- [EHSRS121] Whenever the calibration coefficients are used, a check shall be

performed on the CRC. In case of error a WRONG CALIBRATION alarm shall

be raised.

- [EHSRS122] Every XXX seconds, the software shall verify the CRC of

calibration parameters. In case of a CRC error, the software shall:

o Raise a WRONG CALIBRATION alarm

o Trigger the automatic execution of a 2 points calibration.

Now it is important to note that there are cases where the implementation of a risk

control measure, while on one side is reducing a risk and allowing to keep it under

control, on the other side could originate a different risk, requiring the

implementation of additional risk control measures.

Let’s use the Example 1 to illustrate this. We have identified a risk of drift on the

calibration offset and implemented a risk control measure that corrects for that drift

when it occurs. However repeatedly correcting for the drift of the offset could mask

other problems of calibration: for example, what if the change in the reading of the

standard is not totally due to a drift of the offset, but there is also a component that is

modifying the slope? Correcting for the offset as indicated above, in this case we are

only reaching a sufficient accuracy for patient samples that are in a range close to the

value Ref2 of the second calibration standard, but could generate pretty bad results

for patient samples that are far away from that value.

Let’s assume that the probability of such behavior increases with the increase of the

perceived change in the offset. A risk control measure, in this case, would be to set

limits to the ability to correct the calibration with one point offset correction and raise

a calibration error alarm and/or automatically execute a two points calibration in case

these limits are reached.

Additional requirements to implement the additional RCM could be as follows.

- [CALSRS155] Every time the calibration offset is updated with 1 pt cal, the

calibration software shall check that the change from the original calibration

offset calculated during 2 pt cal is < XXX. In case it is ≥ XXX, the software

shall:

o Raise a WRONG CALIBRATION alarm

o Trigger the automatic execution of a 2 points calibration.

This shows compliance with clauses 5.2.4 and 7.3.2 of IEC 62304.

Comment [RC18]: The change could checked as

absolute value or as percentage change.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 12 of 21

7. Design.
The following drawing illustrates a simplified schematic of instrument’s fluidic path

in the case the calibration standards need to be present on-board.

The real structure could be more complicated than the one here depicted, especially

when we consider the need to be able to fully wash and decontaminate the fluidic

path to avoid carry over between samples or with the calibration standards, but for

sake of simplicity let’s just use, as illustrated in the drawing, a single peristaltic pump

to aspirate either one of the calibration standard or the patient/QC sample.

The fluidic valves on the lines allow to selectively aspirate what is required in the

different phases of the instrument operation.

The software shall need to command the pump and the valves to aspirate the required

solution until it is in contact with the sensors, activate the reading from the sensors,

elaborate the data read from the sensors to present the results to the user, then

command the pump and the valves to wash the lines with flush solution.

From the software architecture point of view (see clause 5.3 of IEC 62304), the

simplified diagram below shows what could be the main components for the slice that

we are considering in this example.

In this decomposition:

- The Data Acquisition process is responsible for selecting the parameter to

acquire, reading the data from the A/D Converter, applying filtering, checking

data stability, returning the filtered stable result to the Data Reduction process.

Comment [RC19]: This does not mean to be

complete (of course the instrument shall have other

components) nor to imply that this would be the best

architectural solution for this software project.. It is

just an example of decomposition that could satisfy

the needs of the project.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 13 of 21

- The Process Control process is responsible for controlling the sequence of

operations of the machine cycles and controlling the mechanical and fluidic

hardware.

- The Data Reduction and Handling process is responsible for executing the

calculations involved in the calibration and in patient results and for

appropriately storing the results of this handling.

- The Error Handling process is responsible for managing the checks on process

and data, for starting recovery actions and for raising alarms when needed.

- The User Interface process is responsible for getting input from the operator and

for displaying results, status and error messages.

- The interfaces between the different processes could be through message queues

to obtain decoupling of the different processes.

Each of the processes shall have further architectural decomposition and detailed

design for each of the components, as requested by clause 5.4 of IEC 62304, but

detailed design of each component is outside the scope of this example.

For example, for the Data Acquisition process we could identify the following

components:

- A/D component:

o Selects a parameter.

o Requests the A/D driver for an acquisition

Comment [RC20]: A different design solution

could have two different processes

Comment [RC21]: The driver itself could

manage all the acquisition timing.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 14 of 21

o Checks the validity of the converted data (e.g. we could raise

underflow or overflow error and discard the data, if the value is too

close to 0 or to the full scale of the A/D converter).

- Filter component:

o Accumulates acquired data in 3 different memory buffers (one for each

parameter).

o Performs filtering as requested: for example, a simple filtering could

be a moving average of xx acquisition points, discarding the highest

and lowest value in the series before averaging.

o Returns the filtered results for each parameter.

- Data ready component:

o For each parameter applies a specific algorithm on the filtered results

to determine when the result is stable and can be used for further

processing.

o Stops the acquisition on each parameter, when it is stable.

- Interface component:

o Receives the command to start acquisition from the Process Control

process.

o Sends the results to the Data Reduction process, when all parameters

are stable.

o Informs Process Control that acquisition is complete, when all

parameters are stable.

o Interfaces to Error Handling process for alarms processing.

8. Testing.
In order to fully test the calibration and especially the RCMs discussed in this

example, it is necessary to create error conditions that it is difficult to generate at

system level:

• to cause and verify the offset correction of 1 point calibration, it is necessary to

cause a drift in the acquisition data

• to cause an error on calibration data CRC it is necessary to generate a corruption

in the data stored in memory.

For this reason the calibration functionality cannot be fully tested at system level, but

it needs to have some of the testing performed white box or grey box with the use of

tools apt to create the error conditions.

To act on the acquisition data to generate drift or other error conditions we could

conceive a hardware tool that acts on the analog signal at the input of the A/D

converter or a software simulation tool that acts on the acquired data. The first one

has the advantage of allowing to test the entire chain, including the A/D driver, but

the second one is probably easier to implement and control and would not need the

use of external hardware. To allow to test the most of the software in the data

acquisition/data reduction chain, the simulation tool should act at the lowest level in

the chain, replacing with simulated data the data acquired at A/D level in the A/D

driver. The tool could remain on-board in the final instrument software and be

possibly activated via password protected service program.

Comment [RC22]: The check on validity could

be eventually performed by the driver, which in such

case would return the result plus a validity flag.

Comment [RC23]: Further detailed design would

describe buffers handling, e.g. usage of pointers for

circular buffers.

Comment [RC24]: Filtering need depends of the

expected noise and could be as simple as the

described averaging algorithm or as complex as a

FFT algorithm.

Comment [RC25]: Algorithms could be different

for different parameters. Examples of algorithms

could be:

-Plateau algorithm: the result is considered stable

when first derivative is close to 0.

-Peak algorithm: the result is considered stable when

there is an inversion in the sign of first derivative.

Comment [RC26]: A data ready timeout, to

address the problem of results that never get stable,

could be managed internally to this process or

externally by other processes (EH or Process

Control)

Comment [RC27]: It is outside the scope of this

example to fully define the capabilities and the

design of this tool.

Comment [RC28]: Note that a simulator on-

board, besides the use for testing, could be of use

also to marketing, during presentations, to allow to

run the instrument in known conditions without the

use of calibration standards and of real samples.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 15 of 21

To allow verifying the results of testing, a password protected service program should

be developed to access and display and/or print data that are normally internal and not

shown to the user:

- Calibration coefficients.

- Acquisition data at different stages in the data acquisition/data reduction chain

- Timers

- Error flags

To allow forcing a CRC error, a password protected service program should be

developed, allowing to write into memory.

Testing needs to be applied at different stages.

Static testing (design review and code inspections) are essential to verify that the

design and the implementation fulfill the requirements. For example, the requirement

about the resolution in the calculation of the calibration coefficients is easy to check

through a code inspection, could be more difficult to test dynamically. Code

inspections are a way to implement software unit acceptance as requested by clause

5.5.3 of IEC 62304, while design reviews implement verification of architecture and

detailed design as requested by clauses 5.3.6 and 5.4.4. of IEC 62304.

Algorithms, such as the filtering algorithm, the data ready algorithm, the calibration

coefficients calculations should be tested at unit level in order to be able to verify a

wide variety of situations and of combinations of data, including limit conditions that

would be best identified if you know the details of the algorithm.

For example, let’s imagine that the plateau algorithm, instead of using the first

derivative, has been implemented by checking that at least N consecutive acquisitions

are within ±xx%.

Unit testing could be used to verify if and how this algorithm fulfills the requirements

at different level of final value: when the plateau is very low (few A/D points) or very

high (close to the full scale of the A/D).

Unit testing could be used to verify fast reaching and slow reaching of the plateau, to

verify limit situations where the data at reaching the plateau are not increasing or

decreasing regularly, but are jumping up and down but still within the range fulfilling

the plateau criteria, situations where the acquired data start low and grow until the

plateau is reached or vice versa start high and decrease.

Unit testing, together with code inspection, is part of the software unit verification

requested by clauses 5.5.2 through 5.5.5 of IEC 62304.

Integration testing could be applied in this example to verify the entire chain of data

acquisition and data reduction, or to verify integration of the Data Acquisition process

with the Process Control process and the Error Handling process by checking for

example a condition where a plateau is not reached in the specified time and an END

POINT error is generated.

Integration testing is requested by clauses 5.6.3 through 5.6.7 of IEC 62304.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 16 of 21

Software system testing is then applied to the fully integrated system as requested by

clause 5.7 of IEC 62304.

The following is an example of a system level test case that could make use of the

described tools to verify some of the RCMs related to calibration as requested by

clause 7.3.1 of IEC 62304.

BG raf / Test Case – CALxxx

VERSION: xx.x DATE CREATED: 15 September 2008

TEST TYPE: SW System CREATED BY: John Brown

TEST TITLE: Calibration Drift Check

TEST OVERVIEW: This test case verifies the following calibration drift handling:

• If difference in acquisition data on second calibrant is within the limits, the

calibration coefficients are not modified.

• If difference in acquisition data on second calibrant is outside the limits, the

offset calibration coefficients are updated.

• If the drift on the calibration offset, reaches the limit, a calibration error is

generated and a 2 points calibration is triggered.

DEPENDENCIES

All actions required to place the system in the proper state prior to executing the test.

Hardware Preparation: Standard instrument. No need of calibrants on-board.

Software Preparation: Software version xxx.x, including the acquisition simulation tool.

Other / Set-up: The instrument must be on, warm up completed, uncalibrated.

SUPPORTING LINKS

Document References: SRS xxxx, RA yyyy, ……

Automated Scripts: None

SRS Ids CALSRSxxx, CALSRSyyy, UISRSzzz, ……

Change Ids:

Test Data Sets: Simulation sets:

CAL1STD_normal: simulates a normal data sequence for CAL1

CAL2STD_normal: simulates a normal data sequence for CAL2

CAL2STD_fixed: maintains indefinitely normal CAL2 value

CAL2STD_drift_low: simulates a drift on CAL2 within the limits

CAL2STD_drift_high: simulates a drift on CAL2 exceeding limits

CAL2STD_drift_err: simulates a drift on CAL2 causing calibration

repetition

TEST Inputs and Expected Results

Step Actions Expected Results Reference

1. Activate the service program to

display in a window internal

information.

The debug window appears in the

specified section of the screen.

SRVSRSxxx

Comment [RC29]: More detail is normally

needed to specify actions and results, but this is just

an example

Comment [RC30]: Traceability information to

the spec., note that wherever possible we use the

specific tags we have used in the spec examples to

show how traceability works.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 17 of 21

2. Select to display the acquired data

at the stage they are passed to the

data reduction and the calibration

coefficient.

The debug window shows blank

acquisition data (no activity is in

progress) and default calibration

coefficients.

3. Activate acquisition simulation

and select the simulation set
CAL1STD_normal

4. Press the “CALIBRATE” soft

key

The main window displays “NOT

READY: CALIBRATION IN

PROGRESS” with a “STOP” soft

key.

The CAL STANDARD 1 is

aspirated according to fluidic cycle.

UISRS123,

CALSRSyyy,

PCSRS099

5. Observe the debug window. After xx seconds from the end of

aspiration, data acquisition is

started.

The acquired data on pH grow from

aaa to bbb, then remain fixed.

The acquired data on pO2 grow

from ccc to ddd, then remain fixed.

The acquired data on pCO2 grow

from eee to fff, then remain fixed.

PCSRS100,

DASRS055,

6. When data are fixed on all 3

parameters, select the simulation

set CAL2STD_normal

The CAL STANDARD 2 is

aspirated according to fluidic cycle.

CALSRSxxx,

PCSRS099

7. Observe the debug window. After xx seconds from the end of

aspiration, data acquisition is

started.

The acquired data on pH grow from

ggg to hhh, then remain fixed.

The acquired data on pO2 grow

from iii to jjj, then remain fixed.

The acquired data on pCO2 grow

from kkk to lll, then remain fixed.

PCSRS100,

DASRS055,

8. When data are fixed on all 3

parameters, select the simulation

set CAL2STD_fixed

The main window displays

“READY” with a “SAMPLE” soft

key.

The pH calibration coefficients are

set: offset = qqq, slope = mmm.

The pO2 calibration coefficients are

set: offset = rrr, slope = nnn.

The pCO2 calibration coefficients

are set: offset = sss, slope = ooo.

The acquired data remain fixed

with pH = hhh, pO2 = jjj and pCO2

= lll

CALSRS034,

CALSRS035,

UISRS132,

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 18 of 21

9. Select the simulation set
CAL2STD_drift_low

The pH acquired data is increased

to ttt.

The pO2 acquired data is decreased

to uuu.

The pCO2 acquired data is

increased to vvv.

These values are close to, but

within the limits, therefore no

correction is done to the calibration

coefficients. They remain the same

of step 8

DASRS100,

10. Select the simulation set
CAL2STD_drift_high

The pH acquired data is increased

to tt1.

The pO2 acquired data is decreased

to uu1.

The pCO2 acquired data is

increased to vv1.

These values are just outside the

limits for offset adjustment. The

offset calibration coefficients are

recalculated, while the slope

coefficients remain the same.

pH offset = qq1, slope = mmm.

pO2 offset = rr1, slope = nnn.

pCO2 offset = ss1, slope = ooo.

DASRS100,

CALSRS123

11. Select the simulation set
CAL2STD_drift_err

The pH acquired data is increased

to tt2.

The pO2 acquired data is decreased

to uu2.

The pCO2 acquired data is

increased to vv2.

This brings the recalculated offsets

outside the limits of allowed offset

drift recovered by 1 point

calibration.

A WRONG CALIBRATION alarm

is presented.

A 2 points recalibration is started.

The main window displays “NOT

READY: CALIBRATION IN

PROGRESS” with a “STOP” soft

key.

CALSRS155,

UISRS123,

12.

Comment [RC31]: This is just one example of

testing limit conditions. Several sets of data could be

used. This test case does not mean to be complete.

Same considerations apply to the following steps.

Comment [RC32]: In the real world the testing

should be more detailed. We could have just one

parameter outside the limits, triggering a 2 points

recalibration. We could test one parameter at a time.

Comment [RC33]: Additional steps could

require verifying the recalibration and involve the

use of other simulation sets.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 19 of 21

9. Traceability.
Traceability can be achieved in different ways, through tags in the document text as

we have shown in this example or by using documentation management tools.

In this example we need to trace the RCMs to their testing through the requirement

specification of the RCM to fulfill the requirements of clause 7.3.3 of IEC 62304.

For example the RCM123 “Offset monitoring and periodic adjust” shall trace to the

requirements:

- [PCSRS200] After the 2 points calibration is completed, the process control

software shall keep the second calibration standard in contact with the measure

sensors. Every XXX minutes, the the process control software shall drive the

peristaltic pump motor at speed YYYY for ZZZ seconds to renew the standard

in contact with the sensor.

- [DASRS100] After 2 Points Calibration is completed, every AAA seconds the

data acquisition software shall perform a new acquisition and check the acquired

value for evaluating the drift from the value used during previous calibration. If

the drift is > XXX, a 1 point offset calibration update shall be requested.

- [CALSRS123] When 1 point calibration is requested, a new offset shall be

calculated based on the value of the second calibration standard. It is equivalent

of a translation of the calibration straight line parallel to itself as illustrated from

the figure below.

The offset calibration coefficient shall be updated as follows:

 b’ = Ref2 – mX2’
The requirement [CALSRS123] shall trace to step 10 of the system test example

presented in previous section. Of course it shall trace also to other steps or to other

test cases, because step 10 is only covering some conditions.

It shall also trace to calibration design, wherever the design defines the details of the

calibration algorithm.

Traceability needs to be established this way for all the requirements to demonstrate

test coverage and especially test coverage of all critical requirements and Risk

Control Measures.

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 20 of 21

10. Appendix: IEC 62304 Cross Reference.
The following table shows what clauses of the standard are addressed or referenced in

this example. The first column lists the clauses of the standard, the second column

indicates in what section of the example they are referenced (left blank if not referenced

in the example, in brackets if partially or indirectly addressed), the comments in the third

column explain in more detail at what level they are addressed.

ANSI/AAMI/IEC 62304 Referenced

in Section

Comments

4.1 Quality management system Not addressed in this example

4.2 Risk Management (5) The example only address some aspects, not the entire

process.

4.3 Software safety classification 2, 3 The example mainly addresses sub-clauses a) and d)

5 Software Development Process

5.1 Software development planning Planning not addressed in this example

5.2 Software Requirements Analysis 4, 6

5.2.1 Define and document software

requirements from System Requirements.

4

5.2.2 Software requirements content 4 Examples of requirements of different types are given,

but not all the types are covered. Some are indicated as

necessary but not fully developed

5.2.3 Include risk control measures in software

requirements.

6

5.2.4 Re-evaluate medical device risk analysis 6

5.2.5 Update system requirements Not addressed in this example

5.2.6 Verify software requirements Not addressed in this example

5.3 Software Architectural Design 7

5.3.1 Transform software requirements into an

Architecture.

7 Only limited to the slice described in the example

5.3.2 Develop an architecture for the interfaces

of the software items

(7) In the example we only give an hint, interfacing not fully

developed.

5.3.3 Specify functional and performance

requirements for SOUP items.

 SOUP is not addressed in the example

5.3.4 Specify system hardware and software

required by SOUP items.

 SOUP is not addressed in the example

5.3.5 Identify segregation necessary for risk

control.

 Segregation not addressed in the example

5.3.6 Verify Software Architecture (8) Only hints given

5.4. Software Detailed Design (7) Discussed but not developed

5.4.1 Refine software architecture into software

units.

(7) Only initial example given

5.4.2 Develop detailed design for each software

unit.

(7) Only initial example given

5.4.3 Develop detailed design for interfaces Not addressed in this example

5.4.4. Verify detailed design (8) Only hints given

5.5 Software Unit Implementation and

Verification

(8) Not specifically addressed in the example.

5.5.1 Implement each software unit Implied, not developed

IVD example Copyright 2008 Crisis Prevention and Recovery LLC page 21 of 21

ANSI/AAMI/IEC 62304 Referenced

in Section

Comments

5.5.2 Establish Software Unit Verification

Process

(8) Some hints given.

5.5.3 Software unit acceptance criteria (8) Some hints given.

5.5.4 Additional Software unit acceptance

criteria

(8) Some hints given.

5.5.5 Software unit verification (8) Some hints given.

5.6 Software integration and integration testing (8)

5.6.1 Integrate software units Implied, not developed

5.6.2 Verify software integration Implied, not developed

5.6.3 Test integrated software (8) Some hints given.

5.6.4 Integration testing content (8) Some hints given.

5.6.5 Verify integration test procedures (8) Some hints given.

5.6.6 Conducts regression test (8) Some hints given.

5.6.7 Integration test records contents (8) Some hints given.

5.6.8 Use software problem resolution process Not addressed in this example

5.7 Software System Testing (8)

5.7.1 Establish tests for software requirements. 8 An example given

5.7.2 Use software problem resolution process Not addressed in this example

5.7.3 Retest after changes Not addressed in this example

5.7.4 Verify software system testing (8) Some hints given.

5.7.5 Software system test record content (8) Some hints given.

5.8 Software Release Release not addressed in this example

6 Software Maintenance Process Maintenance not addressed in this example

7 Software Risk Management Process

7.1 Analysis of software contributing to

hazardous situations

(5)

7.1.1 Identify software items that could

contribute to a hazardous situation

5

7.1.2 Identify potential causes of contribution

to a hazardous situation

5

7.1.3 Evaluate published SOUP anomaly lists SOUP is not addressed in the example

7.1.4 Document potential causes (5)

7.1.5 Document sequences of events (5)

7.2 Risk Control Measures 5

7.2.1 Define risk control measures 5

7.2.2 Risk control measures implemented in

software

5

7.3 Verification of Risk Control Measures 6,8,9

7.3.1 Verify risk control measures 8

7.3.2 Document any new sequence of events 6

7.3.3 Document traceability 9

7.4 Risk Management of Software Changes Software Changes not addressed in this example

8 Software Configuration Management

Process

 Software Configuration Management not addressed in

this example

9 Software Problem Resolution Process Problem Resolution Process not addressed in this

example

