GRASP (General Responsibility Assignment Software Patterns)

A set of very practical guidelines that help answer one of the most common object-oriented design

questions: "Which class should be responsible for this responsibility?"

Here are the 9 original GRASP patterns (most people actively use 5-7 of them):

Pattern Name

1 Information
Expert

2 Creator

3 Controller

4 Low Coupling

5 High Cohesion

6 Polymorphism

7 Protected
Variations (PV)

8 Indirection
9 Pure
Fabrication

Core Idea/When to use it

Assign responsibility to the
class that has the necessary
information

Who should create instances
of Class A?

Who should handle a system
event/ use case?

Assign responsibilities so
classes depend on as few
other classes as possible

Keep related responsibilities
together in one class

When behavior varies by type
— use polymorphism instead
of conditionals

Identify points of predicted
variation and protect them
Assign responsibility to an
intermediate object to avoid
direct coupling

Create artificial classes that
aren'tin the domain model
when needed

Very practical heuristic /
slogan

"That class already knows
that information — letit do
it"

Class B should create Aif B
contains, aggregates,
records, closely uses, or
has the initializing data for A
First object beyond Ul that
takes responsibility for the
operation (usually fagade-
like object)

"Keep dependencies
minimal and stable"

"Stuff that changes
together, belongs together"

"Let the subclass decide
how to behave"

"Encapsulate what varies"
— very close to OCP

"Don't talk to strangers" >
introduce a middleman

"It's okay to invent classes
that don't represent real-
world concepts”

Common opposite
(bad) smell

Anemic Domain Model
+ Service classes doing
everything
God factories
everywhere, everything
created in services

Fat Ul controllers,
everything in God
Service class

Classes knowing about
10+ other concrete
classes

Classes with 2-3
completely unrelated
methods

Big switch/if-else on
type checking

Code full of if (type ==
"X") then...

Direct dependency
between two parts that
change often

Forcing domain objects
to do technical
infrastructure

Larman, C. (2005). Applying UML and patterns: An introduction to object-oriented analysis and design and iterative

development. Prentice Hall PTR.



