
GRASP (General Responsibility Assignment Software Patterns)

A set of very practical guidelines that help answer one of the most common object-oriented design
questions: "Which class should be responsible for this responsibility?"

Here are the 9 original GRASP patterns (most people actively use 5–7 of them):

 Pattern Name Core Idea / When to use it Very practical heuristic /
slogan

 Common opposite
(bad) smell

1 Information
Expert

Assign responsibility to the
class that has the necessary

information

 "That class already knows
that information — let it do

it"

Anemic Domain Model
+ Service classes doing

everything

2 Creator Who should create instances
of Class A?

 Class B should create A if B
contains, aggregates,

records, closely uses, or
has the initializing data for A

God factories
everywhere, everything

created in services

3 Controller Who should handle a system
event / use case?

First object beyond UI that
takes responsibility for the
operation (usually façade-

like object)

Fat UI controllers,
everything in God

Service class

4 Low Coupling Assign responsibilities so
classes depend on as few
other classes as possible

 "Keep dependencies
minimal and stable"

Classes knowing about
10+ other concrete

classes

5 High Cohesion Keep related responsibilities
together in one class

 "Stu^ that changes
together, belongs together"

Classes with 2–3
completely unrelated

methods

6 Polymorphism When behavior varies by type
— use polymorphism instead

of conditionals

 "Let the subclass decide
how to behave"

Big switch/if-else on
type checking

7 Protected
Variations (PV)

Identify points of predicted
variation and protect them

"Encapsulate what varies"
— very close to OCP

Code full of if (type ==
"X") then…

8 Indirection Assign responsibility to an
intermediate object to avoid

direct coupling

"Don't talk to strangers" →
introduce a middleman

Direct dependency
between two parts that

change often

9 Pure
Fabrication

Create artificial classes that
aren't in the domain model

when needed

"It's okay to invent classes
that don't represent real-

world concepts"

Forcing domain objects
to do technical
infrastructure

Larman, C. (2005). Applying UML and patterns: An introduction to object-oriented analysis and design and iterative
development. Prentice Hall PTR.

